Characterizing and bounding the imperfection ratio for some classes of graphs

نویسندگان

  • Sylvain Coulonges
  • Arnaud Pêcher
  • Annegret Wagler
چکیده

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations with respect to different concepts. Perfect graphs are, for instance, precisely those graphs G where the stable set polytope STAB(G) equals the fractional stable set polytope QSTAB(G). The dilation ratio min{t : QSTAB(G) ⊆ t STAB(G)} of the two polytopes yields the imperfection ratio of G. It is NP-hard to compute and, for most graph classes, it is even unknown whether it is bounded. For graphs G such that all facets of STAB(G) are rank constraints associated with antiwebs, we characterize the imperfection ratio and bound it by 3/2. Outgoing from this result, we characterize and bound the imperfection ratio for several graph classes, including near-bipartite graphs and their complements, namely quasi-line graphs, by means of induced antiwebs and webs, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Imperfection Ratio and Imperfection Index for Graph Classes

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations with respect to different concepts. Perfect graphs are, for instance, precisely those graphs G where the stable set polytope STAB(G) coincides with the fractional stable set polytope QSTAB(G). For all imperfect graphs G it holds that STAB(G) ⊂ QSTAB(G). It is, therefore, natural to us...

متن کامل

Graph Imperfection with a Co-Site Constraint

We are interested in a version of graph colouring where there is a ‘co-site’ constraint value k. Given a graph G with a non-negative integral demand xv at each node v, we must assign xv positive integers (colours) to each node v such that the same integer is never assigned to adjacent nodes, and two distinct integers assigned to a single node differ by at least k. The aim is to minimise the spa...

متن کامل

Bounding cochordal cover number of graphs via vertex stretching

It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...

متن کامل

Flipping Triangles and Rectangles

For any graph G, it is obvious that χ(G) ≥ ω(G), but whether χ(G) can be bounded from above by a function of ω(G) is not at all clear. Recall that the two numbers are equal for every induced subgraph of a perfect graph. Thus the ratio of the chromatic number to the clique number of a graph is often studied as a measure of its “imperfection”; see for example Dumitrescu and Jiang (2010) for some ...

متن کامل

4-Prime cordiality of some classes of graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2009